S	3.1.1	3.1.2	3.1.3 Lipids	3.1.4	3.1.4.2	3.1.5 Nucleic	3.1.5.2 DNA	3.1.6 ATP	3.1.7	3.1.8
Biological Molecules	Monomers &	Carbohydrates	Recognise, from	Proteins	Many	acids are	replication	Recall the	Water	Inorganic
lec	polymers	Describe the	diagrams,	Recall the	proteins	important	Describe each	structure &	Evaluate	ions
ž	Describe the	formation of	saturated &	general	are	information-	stage in semi-	function of	the link	Recognise the
g	structure of	disaccharides.	unsaturated	structure of	enzymes	carrying	conservative	ATP.	between	role of ions in
ogi	condensation		fatty acids.	an amino	Appreciate	molecules	replication of		the water	the following
io l	polymers.	Describe the		acid.	how	Describe the	DNA.	Describe	chemistry	topics:
3.1 B		formation of	Describe how		models of	components of		the	& its'	hydrogen ions
'n	Represent the	polysaccharides.	chromatography	Explain how	enzyme	RNA & DNA	Explain the	hydrolysis	function in	& pH; iron
	formation &		can be used to	amino acids	action	nucleotides.	roles of	of ATP.	biological	ions as a
	hydrolysis of	Perform	separate &	give rise to	have		enzymes in		systems.	component of
	condensation	biochemical tests	identify	protein	changed	Describe the	DNA	Describe		haemoglobin;
	polymers using	for reducing	components of	structure.	over time.	reaction between	replication.	the		sodium ions
	equations.	sugars, non-	mixtures of			two nucleotides.		synthesis of		in the co-
		reducing sugars &	amino acids.	Perform the	Appreciate		Evaluate the	ATP from		transport of
		starch.		biuret test	that	Describe	work of	ADP & P _i .		glucose &
			Explain the	for proteins.	enzymes	complementary	scientists in			amino acids;
			different		catalyse a	base pairing.	validating the			& phosphate
			properties of	Relate the	wide range		Watson–Crick			ions as
			triglycerides &	structure of	of	Appreciate that	model of DNA			components
			phospholipids.	proteins to	reactions.	the relative	replication.			of DNA & of
				properties of		simplicity of DNA				ATP.
			Perform the	proteins	Required	led many				
			emulsion test for	named	practical 1:	scientists to				
			lipids.	throughout	Investigate	doubt that it				
				the	the effect	carried the				
				specification	of a	genetic code.				
				•	named					
					variable on					
					the rate of					
					an					
					enzyme- controlled					
					reaction.					

S	3.2.1.1 Structure of	3.2.1.2	3.2.1.3 Methods of	3.2.2 All cells arise	3.2.3 Transport across cell	3.2.4 Cell recognition & the
Cells	eukaryotic cells	Structure of	studying cells	from other cells	membranes	immune system
3.2 (Apply knowledge of	prokaryotic cells	Explain the principles	Recognise the	Describe diffusion, facilitated	Define 'antigen'.
m	the following cell	& of viruses	& limitations of	stages of the cell	diffusion, osmosis, active transport	
	features to explain	Describe the	optical microscopes,	cycle: interphase,	& co-transport.	Describe phagocytosis.
	the adaptions of	features of	transmission	prophase,		
	eukaryotic cells: cell	prokaryotic cells.	electron	metaphase,	Explain the adaptations of	Describe the response of T
	surface membrane,		microscopes &	anaphase &	specialised cells in relation to the	lymphocytes to a foreign
	nucleus,	Describe the	scanning electron	telophase (including	rate of transport across their	antigen.
	mitochondria,	structure of	microscopes.	cytokinesis).	internal & external membranes.	
	chloroplasts, Golgi	virus particles.				Describe the response of B
	apparatus & Golgi		Measure the size of	Explain the	Explain how surface area, number	lymphocytes to a foreign antigen
	vesicles, lysosomes,	Compare	an object viewed	appearance of cells	of channel or carrier proteins &	& the humoral response.
	ribosomes,	prokaryotic cell	with an optical	in each stage of	differences in gradients of	
	endoplasmic	structure to	microscope.	mitosis.	concentration or water potential	Explain the action of vaccines.
	reticulum, cell wall &	eukaryotic cell			affect the rate of movement across	
	cell vacuole.	structure.	Describe the	Describe the	cell membranes.	Explain the differences between
			difference between	process of binary		active & passive immunity.
			magnification &	fission.	Required practical 3: Production of	
			resolution.		a dilution series of a solute to	Recall the structure of HIV, its
				Required practical 2:	produce a calibration curve with	replication in helper T cells &
			Calculate	Preparation of	which to identify the water	how HIV causes symptoms of
			magnification from	stained squashes of	potential of plant tissue.	AIDS.
			microscope images.	cells from plant root		
				tips; set-up & use of	Required practical 4: Investigation	Explain why antibiotics are
			Describe the	an optical	into the effect of a named variable	ineffective against viruses.
			principles of cell	microscope to	on the permeability of cell-surface	
			fractionation &	identify the stages	membranes.	Describe the role of monoclonal
			ultracentrifugation	of mitosis in these		antibodies in therapeutics &
			to separate cell	stained squashes &		ELISA testing.
			components.	calculation of a		
				mitotic index.		Discuss ethical issues associated
						with the use of vaccines &
						monoclonal antibodies.

ц	3.3.1	3.3.2 Gas exchange	3.3.3 Digestion	3.3.4 Mass transport	3.3.4.2 Mass
Organisms exchange substances with their environment	Surface	Describe the adaptations of	& absorption	Relate the structure of haemoglobins to their function in	transport in plants
onr	area to different gas exchange		Describe the	animals.	Explain the role of
vir	volume	surfaces.	role of		xylem in the stem &
en	ratio		mammalian	Explain the role of haemoglobin and red blood cells in the	leaves of plants.
leir	Appreciate	Describe the gross structure	enzymes in the	transport of oxygen taking into account the Bohr effect.	
다	and explain	of the human gas exchange	digestion of		Describe the
vith	the	system.	carbohydrates,	Recall the general pattern of blood circulation in a	cohesion-tension
S <	relationship		lipids &	mammal naming the coronary arteries & of the blood	theory of water
nce	between	Recall the essential features	proteins.	vessels entering & leaving the heart, lungs & kidneys.	transport in the
sta	surface area	of the alveolar epithelium as			xylem.
qn	to volume	a surface over which gas	Outline the	Describe the gross structure of the human heart and how	
e s	ratio &	exchange takes place.	mechanisms of	pressure, volume and valve changes occur during the	Describe the role of
ang	metabolic		absorption for	cardiac cycle.	phloem in the
ç	rate.	Describe the mechanism of	the products of		transport of organic
e)		breathing.	digestions by	Link the structure of arteries, arterioles & veins in	substances in plants.
С.			cells lining the	relation to their function.	
anis		Interpret information	ileum of		Describe the mass
)rg		relating to the effects of lung	mammals.	Describe the structure of capillaries & the importance of	flow hypothesis for
3 0		disease on gas exchange		capillary beds as exchange surfaces.	the mechanism of
, w		and/or ventilation.			translocation.
				Describe the formation of tissue fluid & its return to the	
		Interpret data relating to the		circulatory system.	Appreciate the use of
		effects of pollution and			tracers & ringing
		smoking on the incidence of		Required practical 5: Dissection of animal or plant gas	experiments to
		lung disease.		exchange system or mass transport system or of organ	investigate transport
				within such a system.	in plants.

S	3.4.1 DNA,	3.4.2 DNA & protein	3.4.3 Genetic	3.4.4 Genetic	3.4.5 Species &	3.4.6	3.4.7
relationships between organisms	genes &	synthesis	diversity can arise as	diversity &	taxonomy	Biodiversity	Investigating
gan	chromosome	Recall the structure of	a result of mutation	adaptation	Describe the role of	within a	diversity
org	S	molecules of	or during meiosis	Define genetic	courtship	community	Appreciate that
en	Evaluate the	messenger RNA	Explain how gene	diversity.	behaviour.	Define	genetic diversity
Me	differences	(mRNA) & of transfer	mutations can arise.			'biodiversity'.	within, or
bet	between DNA	RNA (tRNA).		Explain the principles	Understand the use		between species,
ps	molecules in		Complete diagrams	of natural selection	of hierarchy in	Calculate an	can be made by
shi	prokaryotes	Describe transcription	showing the	in the evolution of	phylogenetic	index of	comparing: the
ion	and	as the production of	chromosome	populations.	classification	diversity.	frequency of
lati	eukaryotes.	mRNA from DNA in	content of cells after		systems.		measurable or
re.		prokaryotes and the	the first and second	Explain directional		Evaluate the	observable
n 8	Describe what	production of pre-	meiotic division.	selection,	Understand how	relationship	characteristics;
Itio	a gene is.	mRNA in eukaryotes		exemplified by	each species is	between	the base
aria		that is the spliced to	Explain the different	antibiotic resistance	universally	farming and	sequence of
, va	Understand	form mRNA.	outcome of mitosis	in bacteria, &	identified by a	biodiversity.	DNA; the base
ion	the triplet		and meiosis.	stabilising selection,	binomial consisting		sequence of
nat	code.	Outline the role of		exemplified by	of the name of its		mRNA; the
Genetic information, variation &		RNA polymerase in	Explain how random	human birth	genus & species.		amino acid
inf	Appreciate	joining mRNA	fertilisation of	weights.			sequence of the
tic	that much of	nucleotides.	haploid gametes				proteins
ene	the nuclear		further increases	Required practical 6:			encoded by DNA
	DNA code in	Outline the process of	genetic variation	Use of aseptic			& mRNA.
3.4	eukaryotes	translation as the	within a species.	techniques to			
	does not code	production of		investigate the effect			Conduct
	for	polypeptides from the		of antimicrobial			quantitative
	polypeptides.	sequence of codons		substances on			investigations of
		carried by mRNA.		microbial growth.			variation within
		Eveloin the value of					a species and
		Explain the roles of ribosomes, tRNA &					interpret data collected.
		ATP					conected.