		3.1.1.1 Fundamental particles		3.1.1.2 Mass number and isotopes			3.1.	3.1.1.3 Electron configuration		
	3.1.1 Atomic structure	 Appreciate how understanding has evolved ove Describe moder 	v knowledge and of atomic structure er time. rn atomic theory.	 Determine the number of fundamental particles in atoms and ions using mass number, atomic number and charge. Explain the existence of isotopes. Interpret simple mass spectra of elements to calculate relative atomic mass from isotopic abundance. 				 Define 'first ionisation energy'. Write equations for first and successive ionisation energies. Explain how first and successive ionisation energies in Period 3 (Na–Ar) and in Group 2 (Be–Ba) give evidence for electron configuration in sub-shells and in shells. 		
		3.1.2.1 Relative atomic 3.1.2.2 The mole and the		e	3.1.2.3 The	3.1.2.4 Empirical and m	olecular 3.1.	2.5 Balanced equations and	associated calculations	
	e U	mass and relative	Avogadro constant		ideal gas	formula		Write balanced equat	ions for reactions studied	
	anc	molecular mass	Perform calculations		equation	Calculate emp	irical	Balance equations for unfamiliar reactions when		
	bst	In terms of ¹² C:	using the Avogadro constant:		Use the ideal formula from			reactants and products are specified.		
	f su	Define	 using M_r and amount 		gas equation <i>pV</i> composition by mass or		y mass or	Use balanced equations to calculate:		
	it of	'relative	in moles.		= nRT in percentage by mass		mass	- masses		
	uno	atomic mass	 using concentr 	ration,	equations.	data.	laur	- volumes of gases		
	2 Am	(A _r).	volume and an	solution		Calculate mole formula from	the	- percentage yields	onomios	
try		• Define	substance in a solution.			empirical form	ula and	- concentrations and	volumes for reactions in solutions	
mis	3.1	molecular			relative mole		ular	Make up a volumetric	solution and carry out a simple	
che	mass' (M _r).			mass.			acid–base titration (RP).			
cal		3.1.3.1 Ionic bonding	3.1.3.2 Nature of	3.1.3.3	3.1.3.4 Bon	ding and physical	3.1.3.5 Shapes	3.1.3.6 Bond	3.1.3.7 Forces between	
ıysi		Predict the	covalent and dative	Metallic	properties		of simple	polarity	molecules	
4 1		charge on a	covalent bonds	bonding	• D	escribe the four types of	molecules and	Define	Explain the existence of	
ж.		simple ion	Represent covalent and	Describe	e cr	ystal structure as either	ions	'electronegativity'	these forces between	
		using the	co-ordinate bonds using	the	i0	nic, metallic, giant	Explain the	explain why some	tamiliar and unfamiliar	
		position of	lines and arrows.	hetween		so diamond graphito	bond angles in	honds do not have a	dipole_dipole forces	
		in the		delocalis	i v o	e iodine magnesium	simple	permanent dipole.	induced dipole-dipole	
	gu	Periodic		electron	s ar	nd sodium chloride as	molecules and	P	(van der Waals,	
	ipu	Table.		and	ex	amples of the four	ions with up to		dispersion, London)	
	Bo	Construct		positive	ty	pes of crystal structure.	six electron		forces, hydrogen	
	.1.3	formulas for		ions in	• Re	elate the melting point	pairs (including		bonding.	
	ŝ	ionic		metallic	ar	nd conductivity of	lone pairs of		Explain how melting and	
		compounds.		bonding.	• m	aterials to the type of	electrons)		boiling points are	
					St	ructure and the	central atom		intermolecular forces	
					- Ev	volain using diagrams	central atom.		internolecular forces.	
					th	he energy changes				
					as	ssociated with changes				
					of	f state.				

	3.1.4.1 Enthalpy change		netry	1.4.3 Applications of Hess's 3.1.4.4 Bond enthalpies			
3.1.4 Energetics	 Define standard enthalpy of combustion (Δ_cH^Θ). Define standard enthalpy of formation (Δ_fH^Θ). 	Pefine standard inthalpy of combustion $\Delta_c H^{\Theta}$). Pefine standard inthalpy of combustion $\Delta_c H^{\Theta}$). Pefine standard inthalpy of formation $\Delta_r H^{\Theta}$). Pefine standard inthalpy of formation $\Delta_r H^{\Theta}$). Use this equation to calculate the molar enthalpy change for a reaction and in related calculations. Measurement of an enthalpy change. (RP)		law Use Hess's law to perform calculations, including calculation of enthalpy changes for reactions from enthalpies of combustion or from enthalpies of formation.	 Define the term 'mean bond enthalpy' Use mean bond enthalpies to calculate an approximate value of Δ_H for reactions in the gaseous phase. Explain why values from mean bond enthalpy calculations may vary. 		
3.1.5 Kinetics	 3.1.5.1 Collision theory In terms of chemical reactions: define the term <i>activation energy'</i>. explain why most collisions do not lead to a reaction. 	(RP)1. Collision theory		ction rate in distribution to explain why a small ead to a large increase in rate. f a reaction changes with3.1.5.4 Effect of concentration and pressure3 U• Explain the qualitative effect of changes in concentration on collision frequency.• Explain the requalitative effect of a g change in the pressure of a gas on collision frequency.9		3.1.5.5 Catalysts Use a Maxwell– Boltzmann distribution to help explain how a catalyst increases the rate of a reaction involving a gas.	
3.1.6 Chemical	 3.1.6.1 Chemical equilibria and Le G Use Le Chatelier's principl temperature, pressure an Explain why, for a reversit temperature and pressure 	3.1.6.2 Equilibrium const Construct an ex Calculate a valu system at const Perform calcula Predict the gual	 3.1.6.2 Equilibrium constant Kc for homogeneous systems Construct an expression for Kc for a homogeneous system in equilibrium. Calculate a value for Kc from the equilibrium concentrations for a homogeneous system at constant temperature. Perform calculations involving Kc. Prodict the qualitative offects of changes of temperature on the value of K 				

	3.1.7 Redox	 3.1.7 Oxidation, reduction and redox equations Describe the processes of oxidation and reduction in terms of electrons. Recall the rules for assigning oxidation states Work out the oxidation state of an element in a compound or ion from the formula Write half-equations identifying the oxidation and reduction processes in redox reactions Combine half-equations to give an overall redox equation. 						
	C.2.1 Periodicity	3.2.1.1 Classification Recall that an element is classified as s, p, d or f block according to its position Periodic Table, which is determined by its proton number.	 3.2.1.2 Physical properties of Period 3 elements Explain the trends in atomic radius and first ionisation energy. Explain the melting point of the elements in terms of their structure and bonding. 					
Inorganic Chemistry	3.2.2 Group 2, alkaline earth metals	 3.2.2 Group 2, the alkaline earth metals Explain the trends in atomic radius and first ionisation energy. Explain the melting point of the elements in terms of their structure Explain why BaCl₂ solution is used to test for sulfate ions and why it Describe the reactions of the elements Mg–Ba with water. Describe the use of magnesium in the extraction of titanium from T Describe the relative solubilities of the hydroxides of the elements I Give examples of the use of Mg(OH)₂ in medicine and of Ca(OH)₂ in Explain the use of CaO or CaCO3 to remove SO2 from flue gases. Describe the relative solubilities of the sulfates of the elements Mg Describe the use of acidified BaCl2 solution to test for sulfate ions. Give examples of the use of BaSO₄ in medicine. 	e and bonding. : is acidified. iiCl₄. Mg—Ba in water. agriculture. –Ba in water.					
3.2 In	3.2.3 Group 7(17), the halogens	 3.2.3.1 Trends in halogen properties Explain the trend in electronegativity. Explain the trend in the boiling point in terms of structure and bonding. Explain the trend in oxidising ability of the halogens down the group, including displacement reactions of halide ions in aqueous solution. Explain the trend in reducing ability of the halide ions, including the reactions of solid sodium halides with concentrated sulfuric acid. 	 3.2.3.2 Uses of chlorine and chlorate(I) Describe the reaction of chlorine with water. Appreciate that society assesses the advantages and disadvantages when deciding if chemicals should be added to water supplies. Explain the use of chlorine in water treatment. Appreciate that the benefits to health of water treatment by chlorine outweigh its toxic effects. Describe the reaction of chlorine with cold, dilute, aqueous NaOH and uses of the solution formed. Carry out simple test-tube reactions to identify: cations – Group 2, NH⁴⁺ anions – Group 7 (halide ions), OH⁻, CO₃^{2–}, SO₄^{2–} (RP) 					

	3.3.1 Introduction to Organic Chemistry	 3.3.1.1 Nomenclature Draw structural, displayed and skeletal formulas for given organic compounds. Apply IUPAC rules for nomenclature to name organic compounds limited to chains and rings with up to six carbon atoms each. Apply IUPAC rules for nomenclature to draw the structure of an organic compound from the IUPAC name limited to chains and rings with up to six carbon atoms each. 		 3.3.1.2 Reaction mechanisms Construct balanced equations for the steps in a free-radical mechanism. Outline mechanisms by drawing the structures of the species involved and curly arrows to represent the movement of electron pairs. 	 3.3.1.3 Isomerism define the term structural isomer Draw the structures of chain, position and functional group isomers. Define the term stereoisomer. Draw the structural formulas of E and Z isomers. Apply the CIP priority rules to E and Z isomers. 	
3.3 Organic Chemistry	3.3.2 Alkanes	 3.3.2.1 Fractional distillation of crude oil Define the term alkane. Explain the process of fractional distillation as used to separate petroleum. 	 3.3.2.2 Modification of alkanes by cracking Describe and explain the conditions involv in the cracking of alkanes. Explain the economic reason for cracking alkanes. 	 3.3.2.3 Combustion of alkanes Describe the complete and incomplete combustion of alkanes. Explain the formation and consequences of the following pollutants: NOx , CO, carbon and unburned hydrocarbons. Explain why sulfur dioxide can be removed from flue gases using calcium oxide or calcium carbonate. 	3.3.2.4 Chlorination of alkanes Explain the reaction of methane with chlorine as a free- radical substitution mechanism involving initiation, propagation and termination steps.	
	3.3.3 Halogenoalkanes	3.3.3.1 Nucleophilic substitution 3.3.3.2 Elimination Outline the nucleophilic • Describe the corn halogenoalkanes with the nucleophiles OH ⁻ , CN ⁻ and NH ₃ .		current substitution and elimination reactions of a (e.g. 2-bromopropane with potassium hydroxide). of the reagent as both nucleophile and base. nanisms of these reactions.	 3.3.3.3 Ozone depletion Use equations, such as the following, to explain how chlorine atoms catalyse decomposition of ozone:	

3.3.4 Alkenes	3.3.4.1 Structure, bonding and reactivity 3.3.4 • Describe the bonding in alkenes. alkenes. • Explain how alkenes react and bond. 3.3.4	es or the electrophilic addition r and Br2 the use of bromine t najor and minor products by a rimary, secondary and tertiar	 a.3.4.3 Addition polymers Draw the repeating unit from a monomer structure. Draw the repeating unit from a section of the polyme chain. Draw the structure of the monomer from a section of the polymer. Explain why addition polymers are unreactive. Explain the nature of intermolecular forces between molecules of polyalkenes. 				
3.3.5 Alcohols	 3.3.5.1 Alcohol production Explain the meaning of 'biofuel'. Justify the conditions used in the fermentation of glucose. Write equations to support the sproduced by fermentation is a careasons why this statement is no Outline the mechanism for the for reaction of an alkene with steam catalyst. Discuss the environmental (inclu decision making about biofuel us) 	 3.3.5.2 Oxidation of alcohols Classify alcohols as primary, secondary or tertiary. Describe the different oxidation reactions of alcohols. Write equations for these oxidation reactions. Explain how the method used to oxidise a primary alcohol determines whether an aldehyde or carboxylic acid is obtained. Use chemical tests to distinguish between aldehydes and ketones including Fehling's solution and Tollens' reagent. 			3.3.5.3 Elimination Outline the mechanism for the elimination of water from alcohols.		
3.3.6 Organic analysis	 3.3.6.1 Identification of functional groups tube reactions Identify the functional groups us reactions in the specification. Perform Tests for alcohol, aldehy and carboxylic acid. (RP) 	s by test- Use precise atom molecular mass molecular formu nyde, alkene	Mass spectrometry 3. cise atomic masses and the precise lar mass to determine the lar formula of a compound.		d spectroscopy Il that bonds in a molecule absorb infrared radiation at acteristic wavenumbers. ain the link between absorption of infrared radiation by bonds in methane and water vapour and global warming. Infrared spectra and the Chemistry Data Sheet or Booklet to identify cular bonds, and therefore functional groups, and also to identify urities.		