errors	3.1.1 Use of SI units and their prefixes Recall fundamental (base) units.	3.1.2 Limitation of physical measurements Identify random and systematic errors.	3.1.3 Estimation of physical quantities
and their	Use, and derive where necessary, appropriate SI units for mass, length, time, amount of substance, temperature,	Define: precision; repeatability; reproducibility; resolution and accuracy.	Use orders of magnitude appropriately.
3.1 Measurements	Use SI prefixes, values and standard form appropriately.	Calculate absolute, fractional and percentage uncertainties represent uncertainty in the final answer for a quantity.	Estimate approximate
	Use the prefixes: T, G, M, k, c, m, μ , n, p, f.	Combine absolute and percentage uncertainties. Represent uncertainty in a data point on a graph using error bars.	quantities.
	Convert between different units of the same quantity, e.g. J and eV, J and kW h.	Determine the uncertainties in the gradient and intercept of a straight-line graph.	

ם ב		3.2.1.1	3.2.1.2	3.2.1.3	3.2.1.4 Particle	3.2.1.5 Classification of particles	3.2.1.6	3.2.1.7
antio		Constituents	Stable and	Particles,	interactions	Describe the two classes of hadrons:	Quarks and	Applications
		of the atom	unstable	antiparticles	Describe the four	baryons and antibaryons; mesons.	antiquarks	of
ti e		Describe a	nuclei	and photons	fundamental		Describe	conservation
Ра		simple model	Explain the	Compare	interactions:	Define baryon number.	properties of	laws
2. 2.		of the atom.	role of the	particle and	gravity,		quarks and	Describe the
			strong	antiparticle	electromagnetic,	Explain conservation of baryon	antiquarks.	change of
		Recall charge	nuclear force	masses, charge	weak nuclear,	number.		quark
		and mass of	in keeping	and rest energy	strong nuclear.		Recall the	character in
		the proton,	the nucleus	in MeV.		Describe the proton is the only	combinations	β– and in β+
		neutron and	stable.		Apply the concept	stable baryon into which other	of quarks and	decay.
		electron in SI		Recall the	of exchange	baryons eventually decay.	antiquarks	
		units and	Describe	names of the	particles to		required for	Apply the
		relative units.	how alpha	antiparticles to	explain forces	Describe the pion as the exchange	baryons,	conservation
	les		and beta	the electron,	between	particle of the strong nuclear force.	antibaryons	laws for
	rtic	Outline the	decay arises.	proton, neutron	elementary		and mesons	charge,
	Ра	meaning of		and neutrino.	particles.	Describe the kaon as a particle that		baryon
	2.1	proton	Construct			can decay into pions.	Describe	number,
	m	number Z,	equations for	Use the Planck	Describe the		neutron	lepton
		nucleon	alpha decay,	constant when	electromagnetic	Recall the names of leptons and	decay.	number and
		number A,	β– decay	describing the	force and the role	their antiparticles.		strangeness
		nuclide	including the	photon model	of virtual photons			to particle
		notation. Be	need for the	of	as the exchange	Use lepton number as a quantum		interactions.
		familiar with	neutrino.	electromagnetic	particle.	number; conservation of lepton		
		the ZX A		radiation.		number for muon leptons and for		Recognise
		notation.			Explain the weak	electron leptons.		that energy
				Apply	interaction limited			and
		Explain what		knowledge of	to β - and β +	Describe the muon as a particle that		momentum
		isotopes and		annihilation and	decay, electron	decays into an electron.		are
		use isotopic		pair production	capture and			conserved in
		data.		and the	electron-proton	Explain how strange particles are		interactions.
				energies	collisions; W+ and	produced.		
				involved.	W– as the			

			exchange particles. Construct simple diagrams to represent the above reactions or interactions in terms of incoming and outgoing particles and exchange particles.	Use strangeness as a quantum number to reflect the fact that strange particles are always created in pairs. Describe strangeness in weak and strong interactions. Conservation of strangeness in strong interactions. Appreciate that particle physics relies on the collaborative efforts of large teams of scientists and engineers to validate new knowledge.	
3.2.2 Electromagnetic radiation and quantum phenomena	3.2.2.1 The photoelectric effect	3.2.2.2 Collisions of electrons with atoms	3.2.2.3 Energy levels and photon emission	s 3.2.2.4 Wave- particle duality	

Threshold frequency;	Ionisation and	Line spectra (eg of	Students should		
photon explanation of	excitation;	atomic hydrogen) as	know that		
threshold frequency. Work	understanding of	evidence for	electron		
function 🛛, stopping	ionisation and	transitions between	diffraction		
potential. Photoelectric	excitation in the	discrete energy	suggests that		
equation: h f = 🛛 + Ek (max	fluorescent tube.	levels in atoms. h f =	particles possess		
Ek (max is the maximum	The electron volt.	E1 – E2 In questions,	wave properties		
kinetic energy of the	Students will be	energy levels may be	and the		
photoelectrons. The	expected to be	quoted in J or eV.	photoelectric		
experimental	able to convert eV		effect suggests		
determination of stopping	into J and vice		that		
potential is not required.	versa.		electromagnetic		
			waves have a		
			particulate		
			nature. Details		
			of particular		
			methods of		
			particle		
			diffraction are		
			not expected. de		
			Broglie		
			wavelength 🛛 =		
			h mv where mv		
			is the		
			momentum.		
			Students should		
			be able to		
			explain how and		
			why the amount		
			of diffraction		
			changes when		
			the momentum		
			of the particle is		

				changed.		
				Appreciation of		l
				how knowledge		
				now knowledge		l
				and		l
				understanding		l
				of the nature of		l
				matter changes		
				aver time		
				over time.		l
						l
						l
						l
						l
						l
						l
						l
						l
						l
						l
						l
						l
						l
						F
	3.3.1 Progressive and					
3.3 Waves	stationary waves					
			3.3.1.3 Principle of			
			superposition of			
		2212	waves and			
		5.5.1.2				
		Longitudinal and	formation of			
	3.3.1.1 Progressive waves	transverse waves	stationary waves			

Oscillation of the particles	Nature of	Stationary waves.		
of the medium; amplitude,	longitudinal and	Nodes and antinodes		
frequency, wavelength,	transverse waves.	on strings. f = 1 2l T 🛛		
speed, phase, phase	Examples to	for first harmonic.		
difference, c = f 🛛 f = 1 T	include: sound,	The formation of		
Phase difference may be	electromagnetic	stationary waves by		
measured as angles	waves, and waves	two waves of the		
(radians and degrees) or as	on a string.	same frequency		
fractions of a cycle.	Students will be	travelling in opposite		
	expected to know	directions. A		
	the direction of	graphical		
	displacement of	explanation of		
	particles/fields	formation of		
	relative to the	stationary waves will		
	direction of energy	be expected.		
	propagation and	Stationary waves		
	that all	formed on a string		
	electromagnetic	and those produced		
	waves travel at the	with microwaves and		
	same speed in a	sound waves should		
	vacuum.	be considered.		
	Polarisation as	Stationary waves on		
	evidence for the	strings will be		
	nature of	described in terms of		
	transverse waves.	harmonics. The		
	Applications of	terms fundamental		
	polarisers to	(for first harmonic)		
	include Polaroid	and overtone will		
	material and the	not be used.		
	alignment of			
	aerials for			
	transmission and			
	reception. Malus's			

		law will not be expected.				
3.3.2 Refraction, diffraction and interference	3.3.2.1 Interference	3.3.2.2 Diffraction	3.3.2.3 Refraction at a plane surface			

	Path difference.	Appearance of the	Refractive index of a		l –
	Coherence. Interference	diffraction pattern	substance. $n = c cs$		i
	and diffraction using a	from a single slit	Students should		l
	laser as a source of	using	recall that the		1
	monochromatic light.	monochromatic	refractive index of		1
	Young's double-slit	and white light.	air is approximately		l
	experiment: the use of two	Qualitative	1. Snell's law of		l
	coherent sources or the	treatment of the	refraction for a		l
	use of a single source with	variation of the	boundary n1sin 🛛 =		l
	double slits to produce an	width of the	, n2sin ⊡2 Total		l
	interference pattern.	central diffraction	internal reflection		l
	Fringe spacing, w = D s	maximum with	sin ⊡c = n2 n1 Simple		i –
	Production of interference	wavelength and	treatment of fibre		1
	pattern using white light.	slit width. The	optics including the		l
	Students are expected to	graph of intensity	function of the		1
	show awareness of safety	against angular	cladding. Optical		l
	issues associated with	separation is not	fibres will be limited		l
	using lasers. Students will	required. Plane	to step index only.		l
	not be required to	transmission	Material and modal		l
	describe how a laser	diffraction grating	dispersion. Students		l
	works. Students will be	at normal	are expected to		l
	expected to describe and	incidence.	understand the		l
	explain interference	Derivation of dsin	principles and		1
	produced with sound and	= nI Use of the	consequences of		1
	electromagnetic waves.	spectrometer will	pulse broadening		l
	Appreciation of how	not be tested.	and absorption.		i
	knowledge and	Applications of			1
	understanding of nature of	diffraction			i
	electromagnetic radiation	gratings.			ĺ
	has changed over time.				L
.4 Mechanics and	3.4.1 Force, energy and				
naterials	momentum				

					3.4.1.5		3.4.1.7	
				3.4.1.4	Newton's		Work,	3.4
			3.4.1.3 Motion along	Projectile	laws of	3.4.1.6	energy and	Со
	3.4.1.1 Scalars and vectors	3.4.1.2 Moments	a straight line	motion	motion	Momentum	power	of
	Nature of scalars and	Moment of a force	Displacement,	Independent	Knowledge	momentum =	Energy	Pri
	vectors. Examples should	about a point.	speed, velocity,	effect of motion	and	mass ×	transferred,	cor
	include: velocity/speed,	Moment defined	acceleration. $v = \Delta s$	in horizontal and	application of	velocity	W = Fscos 🛛	of
	mass, force/weight,	as force ×	∆ta=∆v∆t	vertical	the three laws	Conservation	rate of doing	ΔE
	acceleration,	perpendicular	Calculations may	directions of a	of motion in	of linear	work = rate	and
	displacement/distance.	distance from the	include average and	uniform	appropriate	momentum.	of energy	2m
	Addition of vectors by	point to the line of	instantaneous	gravitational	situations. F =	Principle	transfer, P =	Qu
	calculation or scale	action of the force.	speeds and	field. Problems	ma for	applied	$\Delta W \Delta t = Fv$	and
	drawing. Calculations will	Couple as a pair of	velocities.	will be solvable	situations	quantitatively	Quantitative	qu
	be limited to two vectors	equal and	Representation by	using the	where the	to problems	questions	ар
	at right angles. Scale	opposite coplanar	graphical methods of	equations of	mass is	in one	may be set	en
	drawings may involve	forces. Moment of	uniform and	uniform	constant.	dimension.	on variable	cor
	vectors at angles other	couple defined as	nonuniform	acceleration.		Force as the	forces.	to
	than 90°. Resolution of	force ×	acceleration.	Qualitative		rate of	Significance	inv
	vectors into two	perpendicular	Significance of areas	treatment of		change of	of the area	gra
	components at right angles	distance between	of velocity-time and	friction.		momentum, F	under a	po
	to each other. Examples	the lines of action	acceleration-time	Distinctions		=ΔmvΔt	force-	en
	should include	of the forces.	graphs and gradients	between static		Impulse =	displacement	kin
	components of forces	Principle of	of displacement-	and dynamic		change in	graph.	en
	along and perpendicular to	moments. Centre	time and velocity-	friction will not		momentum	efficiency =	wo
	an inclined plane.	of mass.	time graphs for	be tested.		$F\Delta t = \Delta mv$,	useful	aga
	Problems may be solved	Knowledge that	uniform and non-	Qualitative		where F is	output	res
	either by the use of	the position of the	uniform acceleration	treatment of lift		constant.	power input	for
	resolved forces or the use	centre of mass of	eg graphs for motion	and drag forces.		Significance	power	
	of a closed triangle.	uniform regular	of bouncing ball.	Terminal speed.		of the area	Efficiency	
	Conditions for equilibrium	solid is at its	Equations for	Knowledge that		under a	can be	
	for two or three coplanar	centre.	uniform	air resistance		force-time	expressed as	
	forces acting at a point.		acceleration: v = u +	increases with		graph.	а	
	Appreciation of the		at s = u + v 2 t s = ut	speed.		Quantitative	percentage.	

3.4.2 Materials	3.4.2.1 Bulk properties of solids	3.4.2.2 The Young modulus				
					design.	
					transport	
					ethical	
					context of	
					issues in the	
					conservation	
					momentum	
					of	
					Appreciation	
					collisions;	
					inelastic	
					Elastic and	
					packaging).	
					zones,	
					crumple	
				of a vehicle.	football,	
				maximum speed	(eg kicking a	
				that affect the	contact times	
				on the factors	related to	
				a projectile and	forces are	
	,			the trajectory of	, time. Impact	
	constant velocity			air resistance on	vary with	
	rest or moving with		to gravity, g.	of the effect of	forces that	
	the context of an object at		2as Acceleration due	understanding	may be set on	
	meaning of equilibrium in		+ at2 2 v 2 = u 2 +	Qualitative	questions	

	3.5.1.1 Basics of electricity	3.5.1.2 Current– voltage characteristics	3.5.1.3 Resistivity	3.5.1.4 Circuits	3.5.1.5 Potential divider	3.5.1.6 Electromotive force and internal resistance	
3.5 Electricity	3.5.1 Current electricity						
	Density, $\square = m V$ Hooke's law, elastic limit, $F = k\Delta L$, k as stiffness and spring constant. Tensile strain and tensile stress. Elastic strain energy, breaking stress. energy stored = 1 $2F\Delta L$ = area under force-extension graph Description of plastic behaviour, fracture and brittle behaviour linked to force-extension graphs. Quantitative and qualitative application of energy conservation to examples involving elastic strain energy and energy to deform. Spring energy transformed to kinetic and gravitational potential energy. Interpretation of simple stress-strain curves. Appreciation of energy conservation issues in the context of ethical transport design.	Young modulus = tensile stress tensile strain = FL A Δ L Use of stress-strain graphs to find the Young modulus. (One simple method of measurement is required.)					

	transmission of electric power. Critical field will not be assessed.			